Lake Forest Sportscars

990 North Shore Drive
Lake Bluff, IL 60044

Get Directions
Phone: (847) 295-6560
Service: (847) 295-6560

LaFerrari Aperta


Designed for Ferrari’s most passionate clients, the LaFerrari Aperta is the new limited-edition special series model, and just a few examples – all of them already accounted for - of this spider version of the acclaimed LaFerrari supercar will be built.

The intensive development work carried out by Ferrari’s technicians targeted the car’s chassis and aerodynamics and has produced a roadster that delivers the same performance, torsional rigidity, beam stiffness and drag coefficient characteristics as the coupé.

The Aperta retains the LaFerrari’s hybrid powertrain comprising an 800 cv 6,262 cc V12 (specific power output 128 cv/l, compression ratio 13.5:1) coupled with a 120 kW electric motor, for a total power output of 963 cv. The dynamic control systems integrated with the active aerodynamics remain unchanged.


The LaFerrari Aperta’s styling retains the essential characteristics of the coupé. It is a futuristic and absolutely extreme car that seamlessly marries form and function whilst still retaining clear links to classic Ferrari styling cues.

The only significant difference is the door rotation system: when fully open, the Aperta’s doors are now at slightly different angle than in the coupé version.

Vehicle Dynamics

Chassis and Bodyshell

Because the car does not have a roof, Ferrari’s technicians had to focus all their ingenuity on the lower section which had to be reinforced because it is subject to different stresses caused by force lines which, in the coupé, converge in the upper part.

Thanks to a series of targeted modifications designed to reinforce that area to cope with the new stresses, allow the LaFerrari Aperta deliver the same torsional rigidity figure as the LaFerrari, thus putting the Aperta at the top of supercar category in terms of dynamic performance. 



The LaFerrari Aperta’s powertrain, which is the same as the LaFerrari’s, uses hybrid technology. It couples an 800 CV 6262cc V12 with a 120 kW (163 CV) electric motor for a total output of over 960 CV.

Thanks to the HY-KERS system, it is the most high performance and efficient Ferrari ever built. Making full use of Ferrari’s F1 expertise with KERS systems further evolved for use on road cars, the HY-KERS guarantees perfect integration of the V12 and the electric motor, seamlessly blending the advantages of both. The high levels of torque available at low revs from the electric motor allowed the engineers to optimise the internal combustion engine’s performance at higher revs, thus providing exceptional, continuous power throughout the rev range and a maximum torque peak of 900 Nm.

Coupled with the F1 DCT, the electric motor was designed employing High Specific Power Density technology which enabled the engineers to drastically reduce weight and volume in relation to available torque. The result is performance figures comparable to those of the F1 car with the same torque density and the same
efficiency (94%) or, in other words, very limited power dissipation.

The 6,262 cc V12 is the most powerful naturally aspirated engine ever sported by a road-going Ferrari. It punches out 800 hp and spins to 9,250 rpm, to deliver absolutely extraordinary performance, fun behind the wheel and an unmistakable Ferrari sound. These unprecedented results are the product of meticulous honing of the engine’s volumetric, mechanical and combustion efficiency. To boost volumetric efficiency, the V12 employs continuously variable-length intakes - a mainstay in F1 engine technology until banned by rule changes – which optimise performance as a function of engine speed. Similarly, the torque and power curves are optimised across the rev range. The hybrid powertrain generates total torque in excess of 900 Nm: the instantaneous torque from the electric motor is employed at lower revs and V12 engine power and torque is optimised at higher revs.

The V12’s peak torque of 700 Nm is, in fact, developed at 6,750 rpm.



The aerodynamic challenge for the Maranello technicians was to retain the coupé’s signature speed. Their goal with the LaFerrari Aperta’s design was to achieve the same drag figure as the LaFerrari, even when driving without the hard top in place. 

To effectively manage the hot air flow from the radiators through the bonnet, the angle of inclination of the radiators was modified. In the coupé, the radiators are angled to ensure that the air flow hugs the bonnet, but in the LaFerrari Aperta, the radiating masses are angled backwards to direct the air flows out along the underbody. This solution results in complete separation of the hot air from the flow reaching the cockpit, keeping temperature levels for occupants comfortable. 

The new layout of the radiating masses made it necessary to create a duct that could channel air from the upper section of the front grille over the bonnet. This solution generates downforce depending on the variations in the flow momentum striking the car. 

Furthermore, deflecting the hot air to the underbody also meant that the vortex generators needed to be redesigned. The front dam is now longer while the underbody surface around the longitudinal vortex generators has been lowered to boost the ground effect and thus the car’s ability to generate efficient downforce.

In terms of open-top aerodynamic comfort, an innovative integrated system was developed. The high-speed air flow that would otherwise enter the cabin from top of the windscreen is captured by an angled wind-stop fixed to the parcel shelf. The wind-stop is angled to channel the flow through spaces in the car’s interior structure before exiting at a slower speed behind the passenger seats. This delivers a level of interior comfort in line with other convertibles in the Ferrari range without increasing drag.

Vehicle Dynamics

Vehicle Dynamics

Like the coupé version, the LaFerrari Aperta’s active aerodynamics and hybrid system are integrated and constantly interacting with the car’s other dynamic control systems, resulting in unprecedented performance and unparalleled exhilaration. 

Proprietary Ferrari algorithms guarantee optimal integration of the electric motor and V12 engine and thereby optimising dynamic behaviour. When the car is cornering, the HY-KERS keeps the V12’s revs up to ensure quicker response times to the accelerator pedal when exiting.

The Brembo brakes, which integrate with the energy recovery system, have lighter callipers with a specific design designed to guarantee perfect heat dissipation from the new carbon-ceramic discs.

V12 Engine The 6262cc V12 produces 800 CV and the electric motor a further 12o kW (163 CV) for a total of over 960 CV.
Top Speed Over 217 mph Over 350 km/h
Maximum Power 789 @ 9000 rpm*
Acceleration 0-100 km/h (0-62 mph) 2.5 s
Technical specifications
HY-KERS System
  • Total maximum power
  • Total maximum torque
  • V12 maximum power*
  • Maximum revs
  • V12 maximum torque
  • Electric motor output
  • CO2 emissions
  • 963 CV
  • >900 Nm
  • 800 CV @9000 rpm
  • 9250 rpm
  • 700 Nm @6750 rpm
  • 120 Kw (163 CV)
  • 340 g/km
  • Maximum speed
  • 0-100 km/h
  • 0-200 km/h
  • 0-300 km/h
  • over 350 km/h
  • <3 sec
  • <7 sec
  • 15 sec
  • Type
  • Bore and stroke
  • Total displacement
  • Compression ratio
  • Specific power
  • 65-deg. V12
  • 94 x 75,2 mm
  • 6262 cc
  • 13.5:1
  • 128 CV/l
  • Overall length
  • Overall width
  • Height
  • Wheelbase
  • Weight distribution
  • 4702 mm
  • 1992 mm
  • 1116 mm
  • 2650 mm (104.3 in)
  • 41% fr, 59% r
  • Gearbox
  • 7-speed DCT
  • Front
  • Rear
  • double wishbones
  • multi-link
Tyres (Pirelli P-Zero)
  • Front
  • Rear
  • 265/30 - 19
  • 345/30 - 20
Carbon Ceramic Brakes (BREMBO)
  • Front
  • Rear
  • 398 x 223 x 36 mm
  • 380 x 253 x 34 mm
Electronic Controls
  • ESC
  • High perf ABS/EBD
  • EF1-Trac
  • E-Diff 3
  • SCM-E Frs
  • Aerodynamics
  • ESC stability control
  • Performance anti blockage system/electronic brake balance
  • F1 electronic traction control integrated with the hybrid system
  • third generation electronic differential
  • magnetorheological damping with twin solenoids (Al-Ni tube)
  • active
  • *
  • with dynamic ram effect

Lake Forest Sportscars

990 North Shore Drive
Lake Bluff, IL 60044

Get Directions

Contact Us
Phone: (847) 295-6560
Service: (847) 295-6560

Email Us
Showroom Hours:
Monday - Friday: 9 am to 6 pm
Saturday: 9 am to 4 pm
Sunday: Closed
Parts & Service Hours:
Monday - Friday: 7 am to 6 pm
Saturday: 9 am to 4 pm
Sunday: Closed
Connect With Us:
Newsletter Sign Up
Search Lake Forest Sportscars Website
E-Mail Facebook Twitter Google Plus
Make the most of your shopping experience by creating
an account. You can:

Access your saved cars on any device.
Receive Price Alert emails when price changes,
new offers become available or a vehicle is sold.
First Name*
Last Name*
Enter the email address you used when creating the account and click Send button. A message will be sent to that address containing a new password.